Limitations of cell embedding metrics assessed using drifting islands – Nature Biotechnology

You May Be Interested In:Ex-officer accused of ’emotional and sexual’ relationship with crime victim


  • de Sande, B. V. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rood, J. E. et al. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heimberg, G. et al. A cell atlas foundation model for scalable search of similar human cells. Nature 638, 1085–1094 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  • Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 21, 1481–1491 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, T., Li, K., Wang, Y., Li, H. & Zhao, H. Evaluating the utilities of foundation models in single-cell data analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.09.08.555192 (2023).

  • Kedzierska, K. Z., Crawford, L., Amini, A. P. & Lu, A. X. Zero-shot evaluation reveals limitations of single-cell foundation models. Genome Biol. 26, 101 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: beyond empirical risk minimization. Preprint at https://arxiv.org/abs/1710.09412 (2018).

  • Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, T. et al. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620, 181–191 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. K. et al. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. Cell Genom. 2, 100164 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knight-Schrijver, V. R. et al. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. Nat. Cardiovasc. Res. 1, 1215–1229 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, P. et al. A human fetal lung cell atlas uncovers proximal–distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e25 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solé-Boldo, L. et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 3, 188 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Haghverdi, L. et al. Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez, R. et al. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Donno, C. et al. Population-level integration of single-cell datasets enables multi-scale analysis across samples. Nat. Methods 20, 1683–1692 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khosla, P. et al. Supervised contrastive learning. In Advances in Neural Information Processing Systems 33 (eds Larochelle, H. et al.) 18661–18673 (NeurIPS, 2020).

  • Hoffer, E. & Ailon, N. Deep metric learning using triplet network. In Similarity-Based Pattern Recognition: SIMBAD 2015 (eds Feragen, A. et al.) 84–92 (Springer, 2015).

  • Sikkema, L. et al. An integrated cell atlas of the human lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891.e20 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495.e20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luecken, M. et al. Benchmarking atlas-level data integration in single-cell genomics—integration task datasets. figshare https://doi.org/10.6084/m9.figshare.12420968 (2022).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Meme Coins Surpass $111B Market Cap as New Vote-to-Earn (V2E) Dogecoin Rival Flockerz Raises $1.5M in Presale
    Meme Coins Surpass $111B Market Cap as New V2E Dogecoin Rival Flockerz Raises $1.5M in Presale
    Arctic
    Arctic’s new 8,000 RPM case fans absolutely scream at full bore
    Trump 2.0: What His Return Means for the Dollar and Global Economy
    Trump 2.0: What His Return Means for the Dollar and Global Economy
    California governor Gavin Newsom vetoes landmark AI safety bill
    California governor Gavin Newsom vetoes landmark AI safety bill
    Bitget Unveils a $20M Grant to Boost Telegram Mini Apps Development
    Bitget Unveils a $20M Grant to Boost Telegram Mini Apps Development
    China
    China’s reusable rockets pave the way for space-based solar power
    Flash News Hub | © 2025 | News